+2(x, 0) -> x
+2(x, i1(x)) -> 0
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
↳ QTRS
↳ DependencyPairsProof
+2(x, 0) -> x
+2(x, i1(x)) -> 0
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
*12(+2(x, y), z) -> *12(x, z)
*12(+2(x, y), z) -> +12(*2(x, z), *2(y, z))
*12(x, +2(y, z)) -> +12(*2(x, y), *2(x, z))
+12(+2(x, y), z) -> +12(y, z)
*12(x, +2(y, z)) -> *12(x, z)
*12(x, +2(y, z)) -> *12(x, y)
*12(+2(x, y), z) -> *12(y, z)
+12(+2(x, y), z) -> +12(x, +2(y, z))
+2(x, 0) -> x
+2(x, i1(x)) -> 0
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
*12(+2(x, y), z) -> *12(x, z)
*12(+2(x, y), z) -> +12(*2(x, z), *2(y, z))
*12(x, +2(y, z)) -> +12(*2(x, y), *2(x, z))
+12(+2(x, y), z) -> +12(y, z)
*12(x, +2(y, z)) -> *12(x, z)
*12(x, +2(y, z)) -> *12(x, y)
*12(+2(x, y), z) -> *12(y, z)
+12(+2(x, y), z) -> +12(x, +2(y, z))
+2(x, 0) -> x
+2(x, i1(x)) -> 0
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
+12(+2(x, y), z) -> +12(y, z)
+12(+2(x, y), z) -> +12(x, +2(y, z))
+2(x, 0) -> x
+2(x, i1(x)) -> 0
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
+12(+2(x, y), z) -> +12(y, z)
+12(+2(x, y), z) -> +12(x, +2(y, z))
POL(+2(x1, x2)) = 2 + x1 + 2·x2
POL(+12(x1, x2)) = 2·x1
POL(0) = 0
POL(i1(x1)) = 0
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
↳ QDP
+2(x, 0) -> x
+2(x, i1(x)) -> 0
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
*12(+2(x, y), z) -> *12(x, z)
*12(x, +2(y, z)) -> *12(x, z)
*12(x, +2(y, z)) -> *12(x, y)
*12(+2(x, y), z) -> *12(y, z)
+2(x, 0) -> x
+2(x, i1(x)) -> 0
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(+2(x, y), z) -> *12(x, z)
*12(+2(x, y), z) -> *12(y, z)
Used ordering: Polynomial interpretation [21]:
*12(x, +2(y, z)) -> *12(x, z)
*12(x, +2(y, z)) -> *12(x, y)
POL(*12(x1, x2)) = x1
POL(+2(x1, x2)) = 1 + 2·x1 + x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
*12(x, +2(y, z)) -> *12(x, z)
*12(x, +2(y, z)) -> *12(x, y)
+2(x, 0) -> x
+2(x, i1(x)) -> 0
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
*12(x, +2(y, z)) -> *12(x, z)
*12(x, +2(y, z)) -> *12(x, y)
POL(*12(x1, x2)) = 2·x2
POL(+2(x1, x2)) = 1 + x1 + 2·x2
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ QDPOrderProof
↳ QDP
↳ PisEmptyProof
+2(x, 0) -> x
+2(x, i1(x)) -> 0
+2(+2(x, y), z) -> +2(x, +2(y, z))
*2(x, +2(y, z)) -> +2(*2(x, y), *2(x, z))
*2(+2(x, y), z) -> +2(*2(x, z), *2(y, z))